Evaluation of a Particulate Breast Cancer Vaccine Delivered via Skin

Document Type

Article

Publication Date

1-2-2019

Keywords

fsc2020

Abstract

Breast cancer impacts female population globally and is the second most common cancer for females. With various limitations and adverse effects of current therapies, several immunotherapies are being explored. Development of an effective breast cancer vaccine can be a groundbreaking immunotherapeutic approach. Such approaches are being evaluated by several clinical trials currently. On similar lines, our research study aims to evaluate a particulate breast cancer vaccine delivered via skin. This particulate breast cancer vaccine was prepared by spray drying technique and utilized murine breast cancer whole cell lysate as a source of tumor-associated antigens. The average size of the particulate vaccine was 1.5 μm, which resembled the pathogenic species, thereby assisting in phagocytosis and antigen presentation leading to further activation of the immune response. The particulate vaccine was delivered via skin using commercially available metal microneedles. Methylene blue staining and confocal microscopy were used to visualize the microchannels. The results showed that microneedles created aqueous conduits of 50 ± 10 μm to deliver the microparticulate vaccine to the skin layers. Further, an in vivo comparison of immune response depicted significantly higher concentration of serum IgG, IgG2a, and B and T cell (CD4+ and CD8+) populations in the vaccinated animals than the control animals (p < 0.001). Upon challenge with live murine breast cancer cells, the vaccinated animals showed five times more tumor suppression than the control animals confirming the immune response activation and protection (p < 0.001). This research paves a way for individualized immunotherapy following surgical tumor removal to prolong relapse episodes.

DOI

https://doi.org/10.1208/s12248-018-0285-7

Additional Files

Share

COinS