Stability of Extemporaneously Prepared Sodium Benzoate Oral Solution

Andrew S. Decker
St. John Fisher University, asd07043@students.sjf.edu

Melinda E. Lull
St. John Fisher University, mlull@sjf.edu

David Hutchinson
St. John Fisher University, dhutchinson@sjfc.edu

Follow this and additional works at: https://fisherpub.sjf.edu/pharmacy_facpub

Part of the Pharmacy and Pharmaceutical Sciences Commons

Publication Information

Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations.

This document is posted at https://fisherpub.sjf.edu/pharmacy_facpub/85 and is brought to you for free and open access by Fisher Digital Publications at . For more information, please contact fisherpub@sjf.edu.
Stability of Extemporaneously Prepared Sodium Benzoate Oral Solution

Abstract
Purpose: Sodium benzoate (NaC7H5O2), a common food preservative, is the salt form of benzoic acid. It is used as an alternative treatment in patients with hepatic encephalopathy or urea cycle disorders as it is believed help stimulate ammonia removal via a non-urea cycle based pathway. Despite its use, sodium benzoate is not an FDA approved medication and has no commercially available oral formulations, although an IV formulation is available in combination with sodium phenylacetate (Ammonul®). The objectives of this study were to prepare a sodium benzoate solution and determine the stability of an extemporaneously prepared oral solution over a 90-day period.

Methods: An oral solution of sodium benzoate was prepared and a 1 ml sample was withdrawn from each bottle immediately after preparation and at 7 and 14 days and assayed for drug concentration by stability-indicating high performance liquid chromatography. Stability of sodium benzoate solution will be defined as maintenance of greater than or equal to 90 percent of the initial concentration.

Results: The sodium benzoate maintained 96% and 93% of the initial concentration at 7 and 14 days, respectively. Therefore, sodium benzoate oral solution in cherry syrup is stable for a minimum of 14 at room temperature.

Keywords
fsc2016

Disciplines
Pharmacy and Pharmaceutical Sciences

Comments
Presented at American Society of Health Systems Pharmacy Midyear Clinical Meeting in New Orleans, Louisiana, December 2015.

This poster presentation is available at Fisher Digital Publications: https://fisherpub.sjf.edu/pharmacy_facpub/85
Background

- Urea cycle disorders (UCD) occur in 1:8500 births and lead to an accumulation of ammonia due to a deficiency of the enzyme(s) utilized in the urea cycle.
- Depending on the severity, UCD can lead to growth suppression, neurologic changes, seizures, coma, and death.
- Sodium benzoate is believed to stimulate ammonia removal via the Hippurate pathway, independent of the urea cycle.
- Sodium benzoate/sodium phenylacetate (Ammonul®) is an FDA approved IV formulation approved for the treatment of UCD.
- There is currently no FDA approved oral formulation of sodium benzoate commercially available; although many pediatric patients utilize compounded solutions for chronic therapy.

Objectives

- Determine the 90-day stability of sodium benzoate oral solution, defined as the retention of at least 90% of the initial concentration.

Methods

Sample Preparation:
- Twenty-five grams of sodium benzoate was added to a beaker containing 50 ml of sterile water and stirred until dissolved.
- The resulting solution was filtered via Whatman filter paper and added to a 4-oz amber bottle pre-calibrated to 100 ml.
- The beaker which contained the sodium benzoate solution was rinsed with cherry syrup and added to the amber bottle until final volume of solution was 100 ml.
- Final solution concentration was 250 mg/ml.

Preparation for Analysis:
- Prepared samples for shaken for 1 minute before sampling.
- A 1 ml aliquot was removed from each sample and diluted to 100 ml with diluent (50:50 mixture of sterile water and acetonitrile) for a concentration of 2.5 mg/ml.
- A 0.1 ml aliquot of the 2.5 mg/ml solution was further diluted to 100 ml with diluent for a final concentration of 2.5 mcg/ml.
- Samples were filtered through a 45-micron filter.

Sample for Analysis:
- Samples were analyzed at days 0, 7, and 14.
- A 0.1 ml aliquot of the 2.5 mg/ml solution was further diluted to 100 ml with diluent for a final concentration of 2.5 mcg/ml.
- A 1 ml aliquot was removed from each sample and diluted to 100 ml with diluent for a final concentration of 2.5 mg/ml.
- Samples were filtered through a 45-micron filter.
- Samples were analyzed at days 0, 7, and 14.

Analysis:
- Samples were analyzed via a Shimadzu HPLC with a C18 column and mobile phase of 30:70 acetonitrile and 20-mM monobasic potassium phosphate adjusted to pH of 2.5 with phosphoric acid.
- A 15 ul sample was injected and analyzed with the detector set at 230 nm.
- The samples were run for 15 minutes with a mobile phase rate of 1 ml/min.
- The chromatogram was analyzed using LC solutions version 1.2.

Results

- The chromatogram was analyzed using LC solutions version 1.25.
- Sodium benzoate oral solution in cherry syrup appears to be stable for at a minimum of 14 days at room temperature.
- Further stability analysis will be conducted at days 30, 60, and 90.
- A forced degradation analysis will also be conducted by exposing the samples to acidic and basic pH, hydrogen peroxide, direct sunlight, and prolonged exposure to 60°C.

Conclusions

- Sodium benzoate oral solution in cherry syrup is appears to be stable for at a minimum of 14 days at room temperature.
- Further stability analysis will be conducted at days 30, 60, and 90.
- A forced degradation analysis will also be conducted by exposing the samples to acidic and basic pH, hydrogen peroxide, direct sunlight, and prolonged exposure to 60°C.

REFERENCES:
2. Cederbaum S. What are the treatment options? National Urea Cycle Disorders Foundation [Internet]. Available from: http://www.nucdf.org/ucd_symptoms.htm