Programming Macrophage Inflammation Resolution: The Role of Omega-3 Polyunsaturated Fatty Acids

Boris Krasnov
St. John Fisher University, bak07784@students.sjf.edu

Mathew Lombardozzi
St. John Fisher University, msl09713@students.sjf.edu

Maria Caraballo
St. John Fisher University, mlc00400@students.sjf.edu

Ramil Sapinoro
St. John Fisher University, rsapinoro@sjf.edu

Follow this and additional works at: https://fisherpub.sjf.edu/pharmacy_facpub

Part of the Pharmacy and Pharmaceutical Sciences Commons

Publication Information
Krasnov, Boris; Lombardozzi, Mathew; Caraballo, Maria; and Sapinoro, Ramil, "Programming Macrophage Inflammation Resolution: The Role of Omega-3 Polyunsaturated Fatty Acids" (2015). *Pharmacy Faculty/Staff Publications*. Paper 60.
https://fisherpub.sjf.edu/pharmacy_facpub/60
Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations.

This document is posted at https://fisherpub.sjf.edu/pharmacy_facpub/60 and is brought to you for free and open access by Fisher Digital Publications at . For more information, please contact fisherpub@sjf.edu.
Programming Macrophage Inflammation Resolution: The Role of Omega-3 Polyunsaturated Fatty Acids

Abstract
It was previously thought that resolution of inflammation was a passive process, but recent emerging research has identified that resolution is an active process and that dual acting lipid mediators derived from essential omega-3 polyunsaturated fatty acids (PUFAs) have both anti-inflammatory (reducing neutrophil access to the inflamed tissue) and pro-resolving (removal of apoptotic cells by macrophages in the inflamed site) actions. The objective of our study was to determine the role of omega-3 PUFAs in programming phenotypic changes in treated macrophages. The polarization of macrophages during inflammatory responses to functionally distinct phenotypes may play a role in both inflammation and resolution of inflammation following treatment with omega-3 PUFAs for chronic inflammatory diseases.

Keywords
fsc2015

Disciplines
Pharmacy and Pharmaceutical Sciences

Comments

This poster presentation is available at Fisher Digital Publications: https://fisherpub.sjf.edu/pharmacy_facpub/60
The objective of our study was to determine the role of omega-3 polyunsaturated fatty acids in programming phenotypic changes in treated macrophages. It was previously thought that resolution of inflammation was a passive process, but recent emerging research has identified that resolution is an active process and that dual acting lipid mediators derived from essential ω-3 PUFAs have both anti-inflammatory (reducing neutrophil access to the inflamed tissue) and pro-resolving (removal of apoptotic cells by macrophages in the inflamed site) actions.

Omega-3 PUFAs have anti-inflammatory and pro-resolving activity in pre-clinical disease models (e.g. peritonitis, colitis, asthma).

Chronic inflammation is a key factor in the pathogenesis of numerous diseases (e.g. COPD, RA, IBD).

The M2 Macrophage Phenotype

- **Markers**
 - Arginase 1
 - FIZZ1
 - Ym1
 - Mannose Receptor
 - Anti-inflammatory Cytokines

- **Role in allergic responses driven by IL-4 and IL-13**
- **Involved in the development of TH2-dependent immune response to extracellular parasites**
- **M2 macrophages are associated with an anti-inflammatory state**

Introduction

DHA treatment reduces IL-6 production in product in LPS-stimulated RAW264.7 macrophages

IL-6 production was measured in the supernatant fraction of treated cells by EUSA. RAW264.7 macrophages were seeded at a density of 200,000 cells/ml and pre-treated with the indicated concentrations (µM) of DHA 12-24 hours prior to a 24 hour LPS (1 µg/ml) stimulation. Data is represented as mean ± SEM for n=3. **p<0.01 vs LPS-treated cultures by one-way ANOVA; ***p<0.001 vs LPS-treated cultures by one-way ANOVA. (DHA (500µM) + LPS = not detected by lower sensitivity of assay)**

Exposure to DHA following inflammatory insult attenuates COX-2 expression on LPS-stimulated RAW264.7 macrophages

Western blot: RAW264.7 macrophages were seeded at a density of 200,000 cells/ml and pre-treated with DHA 12-24 hours prior to 24 hour LPS (500µg/ml) stimulation or treated with DHA 30 minutes after LPS stimulation. Non-treated cultures were treated with the same final concentration of ethanol as vehicle. Cell lysates were collected and subjected to western blot analysis using an anti-COX-2, or anti-beta-tubulin antibody. The antibody-specific bands were quantified by densitometry and were normalized to beta-tubulin (numerical values above COX-2 band.) Blot shown is a representative image from 3 independent experiments.

DHA drives polarization of alternatively activated (M2) macrophages

Quantitative RT-PCR. Total RNA was extracted from non-treated, LPS treated (500 ng/ml), and DHA pre-treated (500 µM) RAW264.7 macrophages to measure mRNA levels of Arg-1 and FIZZ-1. Data is represented as mean ± SEM for n=4. **p<0.01 versus LPS-treated cultures by one-way ANOVA; ***p<0.001 versus LPS-treated cultures by one-way ANOVA.

Conclusions

- The action of ω-3 PUFAs drives the decrease in the proinflammatory mediator CDX-2 and IL-6
- M2 markers, Arg-1 and FIZZ1, are up-regulated in DHA treated macrophages
- The polarization of macrophages during inflammatory responses to functionally distinct phenotypes may play a role in both inflammation and resolution of inflammation following treatment with ω-3 PUFAs.