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Abstract  

Decarboxylation of beta-keto acids in enzymatic and heterogeneous catalysis has been considered in 

the literature as an irreversible reaction due to a large positive entropy change. We report here 

experimental evidence for its reversibility in heterogeneous catalysis by solid metal oxide(s) 

surfaces. Ketones and carboxylic acids having 13C-labeled carbonyl group undergo 13C/12C exchange 

when heated in an autoclave in the presence of 12CO2 and ZrO2 catalyst. In the case of ketones, the 

carbonyl group exchange with CO2 serves as evidence for the reversibility of all steps of the catalytic 

mechanism of carboxylic acids ketonic decarboxylation, i.e. enolization, condensation, dehydration 

and decarboxylation. 

 

KEYWORDS: Reaction mechanism; zirconia catalyst; carbon dioxide; decarboxylative ketonization; 

ketonic decarboxylation; reaction equilibrium.  
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1. INTRODUCTION 

Chemical processes with CO2 release or capture are receiving ever increasing attention in 

connection with disturbances of the global carbon dioxide cycle. The mechanism of one of these 

enzymatic reactions, the stepwise vs. the concerted decarboxylation of beta-keto acids, has been 

debated since the beginning of the twentieth century [1–8]. This remarkably enlightening and still 

evolving discussion is about making careful choices of appropriate experimental and computational 

methods for mechanistic studies in atypical cases. 

The mechanism of another reaction important for the production of renewable biofuels, the 

catalytic decarboxylative ketonization of carboxylic acids, may incorporate the above beta-keto 

acids decarboxylation step on surface of metal oxide catalysts [9–12]. Conclusions made in the 

literature on beta-keto acids behavior in solutions may well be applicable to the decarboxylation on 

surfaces during the catalytic production of ketones from carboxylic acids. 
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Scheme 1. Mechanism of 13C/12C exchange between ketones and CO2 resulting from reverse 
decarboxylative ketonization reaction.1 

 

                                                      
1 Although the strongest adsorption of CO2 on metal oxides is realized through formation of surface carbonates, the 
weakly adsorbed linear form of CO2 shown here is designed to illustrate preparedness for the exchange step with the 
gas phase CO2. 
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It is generally accepted that decarboxylative ketonization mechanism proceeds through 

enolization of one of the acid molecules on the surface of metal oxides followed by the 

condensation with the second one according to Scheme 1 [10–12]. By analogy with the aldol and 

Claisen condensations, we suggested to call these molecules the enolic and carbonyl components 

[13]. Variations in the literature describe the carbonyl component (electrophile) as an acyl cation 

[10], a monodentate carboxylate [11] or a bidentate one [12], which may depend on the type of the 

metal oxide catalyst surface. The intermediate resulting from the condensation dehydrates to the 

beta-keto acid derivative [12], which decarboxylates to the enolic form of the final ketone product. 

Recently, it has been suggested by Kluger [7] that decarboxylation of beta-keto acids in solutions 

or by enzymes might be reversible and that an important role of enzymes is to provide conditions 

for effectively removing CO2 away from the enolized ketone product, slowing down the reverse 

reaction. However, the reversibility of beta-keto acids decarboxylation has neither been 

demonstrated experimentally for enzymatic reactions, nor in the heterogeneous catalysis. We are 

reporting experimental results demonstrating for the first time the reversibility of the catalytic 

decarboxylative ketonization reaction, which presumably proceeds through the formation of beta-

keto acids. 

This finding implies not only the reversibility of beta-keto acids decarboxylation but also 

reversibility of their formation in the condensation step, as well as all other steps outlined in 

Scheme 1, so that the overall catalytic reaction of carboxylic acids to ketones on metal oxides is 

reversible, while ketones remain thermodynamically favored products. 
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2. EXPERIMENTAL  

All experiments have been conducted inside a 22 mL volume non stirred autoclave which allows 

small amounts of isotopically labeled compounds to be used on a milligram scale. Liquid compounds 

were loaded on the bottom of the autoclave. The amount of CO2 was controlled by adding weighed 

pieces of dry ice and immediately sealing the autoclave. Pieces of catalyst were mounted in the top 

compartment of the autoclave so that only vapors can reach it and react. At the end of the specified 

reaction time (Table 1), the autoclave was chilled and the liquid products were collected from the 

bottom for the gas chromatography / mass spectroscopy (GC/MS) analysis. The degree of exchange 

was calculated as the fraction of the light isotopologue found in the labelled compounds at the end 

of the exchange reaction and corrected for the initial 99% 13C isotopic purity of reagents and for the 

natural 1.1% occurrence of 13C per carbon atom in CO2 according to equations A1 and A2 provided 

in Supplementary Material.  

 

 3. RESULTS AND DISCUSSION 

If the reaction is taken in the reverse direction, starting from ketone, water and CO2 on the right 

hand side (Scheme 1), it could produce two molecules of carboxylic acids on the left hand side of the 

equation. Normally, this is not observed experimentally, because thermodynamic equilibrium favors 

the ketone product formation (calculations are provided in Supplementary Material). When we used 

13C label on the carbonyl group of the ketone in the autoclave reaction with CO2 and water, the label 

was scrambled between the carbonyl group of the ketone and CO2. We propose that the scrambling 

takes place between two acetic acid molecules at the stage of their formation, while either one of 

the acids can go through the enolization process with equal probability on the path back to the 
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ketone and CO2. It is the enolized acid which is losing CO2, while the carbonyl group of the other acid 

is used to regenerate the ketone. This observation serves as strong evidence for the reversibility of 

the catalytic decarboxylative ketonization of carboxylic acids, including all steps of the literature 

mechanism [12] with the consequence of affecting the reaction kinetic scheme. 

It is less likely that 13C/12C exchange can proceed through some kind of a direct alkyl group 

transfer from ketone to CO2 as in the concerted mechanism of ketonic decarboxylation, or via 

formation of alkyl radicals, or alkyl anions, given that all such options have been ruled out over the 

century–long debate in favor of the stepwise mechanism of alkyl group transfer via beta-keto acid 

formation [10–12].  The most recent experimental evidence against direct alkyl group transfer  is 

that reported in the work of Oliver-Tomas et al. [14]. 

13C-labeled carboxylic acids too exchange their carboxyl group presumably through the 

condensation between enolized surface carboxylate with CO2 into intermediate malonic acid 

(Scheme 2, Table 1). Exchange via retro-Koch – Koch reaction equilibrium under chosen conditions is 

very unlikely. Retro-Koch decomposition of carboxylic acids requires much higher temperatures, 

above 500 °C, and cannot compete with the ketonic decarboxylation favored at 300 °C [14]. Only 

acids lacking alpha-hydrogens and not able to undergo ketonic decarboxylation may be forced into 

the retro-Koch reaction at extreme temperatures. Pivalic acid decomposition into isobutene and CO 

is an example described on zirconia catalyst at 550 °C [14]. Of the two acids studied in the present 

exchange experiments (Table 1), only isobutyric acid can theoretically decompose into alkene and 

CO by the unfavorable path, but acetic acid cannot do so. It would form rather inert methane, which 

does not convert back to AcOH on zirconia. An additional exchange would be required between CO 
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and CO2 by the water-gas shift reaction, which is also unlikely at temperatures below 300 °C. 

Neither CO, nor H2 were detected by GC analysis of the vented gas. 

Under these conditions, inside the non-stirred autoclave, and at relatively low temperatures 270-

280 °C, the reaction is much slower in comparison to a continuous gas flow reactor typically 

operating at higher temperatures, 350-450 °C. As a reference point, we have tested the rate of the 

cross-ketone formation from a mixture of acetic and isobutyric acids under exactly the same 

conditions. The turnover frequencies (Fig. 1, Table 1) have been calculated on the basis of the 

computational modelling which describes each catalytic site as constructed out of four zirconium 

atoms [12] and by using the BET surface areas measured for the employed zirconium oxide 

catalysts.  

Reactions under the chosen conditions might be limited by diffusion. Typical reaction rates of the 

catalytic conversion of carboxylic acids to ketones with the same catalyst in the continuous flow 

reactor at higher temperatures are usually much higher, up to three orders of magnitude. It can be 

seen from Fig. 1 that the rate of 13C/12C exchange between carbonyl groups and CO2 is only slightly 

lower compared to the decarboxylative ketonization rate. If the same ratio of the forward and the 

reverse decarboxylative ketonization reaction in the autoclave is maintained for the continuous 

process under comparable partial pressure of CO2, it will signify a substantial inhibition of the 

reaction rates by CO2 in commercial processes, which has not been recognized yet.  

 Previously, it was believed that such inhibition is due to the adsorption of products, CO2, 

water and ketones, competing with adsorption of reagents on the catalytic sites. Evidently, 

the reverse reaction can make its own and even more important contribution to the 

inhibition of the decarboxylative ketonization reaction. 
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 A typical industrial reactor employed for the production of ketones might have 60 - 90 psi 

pressure, an order of magnitude lower compared to the 600 psi estimated pressure in our 

experiments, so that the rate of ketones condensation with CO2 will be lower. However, 

newly developing technologies for the conversion of biomass to fuels by the decarboxylative 

ketonization under supercritical water conditions require high pressures [15], so the 

inhibition of the reaction rate by CO2 could become significant. 

 KOH treated catalyst (ZK) showed somewhat higher activity for the 13C/12C exchange (Fig. 

1) in line with its generally higher activity for the decarboxylative ketonization reaction 

[16,17]. Higher exchange rates might be attributed to a higher adsorption of CO2 on the 

alkaline metal promoted surface. 

We have found that acetic acid is more active for the exchange reaction compared to isobutyric 

acid at the same molar concentration of acids in the reactor. One possible explanation is the lower 

boiling point and higher concentration of acetic acid in the vapor phase. Another factor is the lower 

degree of branching at the alpha position of acetic acid, so its condensation with CO2 after 

enolization proceeds faster. This is in agreement with the computational data showing that the 

condensation with carboxylic acids is also faster for the enolized acetate vs. isobutyrate [12]. 
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Scheme 2. Mechanism of 13C/12C exchange between carboxylic acids and CO2 as a result of 
the reversible condensation - decarboxylation reaction.1 
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Ketones represented by acetone and 3-methylbutan-2-one (methyl isopropyl ketone - 

MIPK), react slower in 13C/12C exchange compared to acids (Fig. 1). In general, ketones 

adsorption on metal oxides is weaker [10–12], which may explain their lower activity. In 

addition, the path for the 13C/12C exchange for carboxylic acids is shorter (Scheme 2), while 

ketones have to go through more steps (Scheme 1). The observed difference in reaction 

rates for ketones and carboxylic acids is in agreement with the kinetic relevance of the 

enolization and condensation of carboxylic acids in the mechanism of the decarboxylative 

ketonization. Combination of these steps was proposed to be limiting the whole mechanism 

[11,12]. These steps are also part of the 13C/12C exchange mechanism for ketones with CO2, 

but not for the exchange of carboxylic acids with CO2. Thus, all factors promote faster 

exchange for carboxylic acids compared to ketones. 

Particularly interesting is the disproportionation of the cross-ketone, MIPK, to the symmetrical 

ketones, acetone and di-isopropyl ketone (DIPK), induced by the presence of CO2 and water 

(Scheme 3). Regardless of which side of MIPK, either iso-propyl or methyl group, is undergoing 

enolization and condensation with CO2, the same two acids, isobutyric and acetic, can be produced 

after hydration and retro-condensation steps. Unlike the case of acetone exchange reaction, in 

which two molecules of acetic acid are produced and which can go back only to acetone, pair of 

isobutyric and acetic acids do not just go back to MIPK, but also yield two respective symmetrical 

ketones. Activity of unlabeled MIPK for the carbonyl group exchange (Fig. 1, Table 1) can only be 

seen through the formation of those two symmetrical ketones, while the intermediate path back to 

the starting cross-ketone cannot be detected. Therefore, activity of unlabeled MIPK appears about 

twice lower compared to the intrinsic value. 



 10 

O O

Zr Zr

O O

Zr Zr

O

Zr

O O

Zr Zr

O O

Zr Zr

O

Zr

C

O

Zr
-H

+

+H
+

Zr
- H

2
O

+2H
+

+ H
2
O

-2H
+

condensation to
symmetrical ketones

(i-Pr)
2
C=O

(CH
3
)
2
C=O

 

Scheme 3. Mechanism of MIPK disproportionation to acetone and DIPK in the presence of CO2 
and water.1 

 

Similarly, a mixture of two symmetrical ketones, acetone and DIPK, has produced 

detectable traces of the cross-ketone, MIPK, under similar conditions. The degree of 

conversion was not measured due to the low amount of MIPK produced. The value of the 

equilibrium constant, Keq = 12.5, calculated at 300 °C favors acetone and DIPK, 92.6% 

fraction, vs. MIPK, 7.4% fraction (for details, see Supplementary Material). It is in agreement 

with the fact that the selectivity to the cross-ketone vs. symmetrical ketones is below 

statistically expected value with zirconia catalyst [12,17]. 

Discovery of the side reaction which converts the cross ketone into two symmetrical 

ketones opens a possibility for a partial thermodynamic control over the cross-selectivity in 

the decarboxylative ketonization of a mixture of carboxylic acids in a competition with the 

kinetic control [17]. 

A non-catalytic version of the exchange reaction between labeled and non-labeled carboxyl 

groups has been noticed first in 1959 by Nakai et al. [18] during their study of the cross-

ketone formation by the pyrolysis of sodium salts of a mixture of two carboxylic acids. 

Remarkably, even after a short time and incomplete conversion, carboxylic groups of both 
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unreacted acids already become labeled, thus, indicating carboxyl exchange between acids 

at temperatures in the 310-320 °C and 350-360 °C range.  The results were erroneously 

interpreted in support of a radical mechanism of the decarboxylative ketonization due to the 

next flaw in data analysis. When pyrolysis of the non-labeled phenylacetic acid to the 

respective ketone was done in the presence of Na2
14CO3 at 240-250 °C, there was no 14C/12C 

exchange detected. The fact that both the unreacted acid and the ketone did not acquire 14C 

label from sodium carbonate was used to support radical mechanism. However, all other 

exchanges between labeled and non-labeled acids took place only at higher temperatures, 

above 310 °C. At lower temperatures, 240-260 °C, not only there were no exchange between 

acid and sodium carbonate, but the same pairs of labeled and non-labeled acids also did not 

exchange. Thus, it is not clear whether the exchange between sodium carbonate and acids at 

lower temperatures was just too slow and, for that reason, was undetected. 

Carboxylic group exchange between pairs of acids prior to their ketonization has been also 

described in several follow-up studies of the pyrolysis of salts with the carboxylic group 

labeled on one of the acids [19,20], but none of those studies have interpreted this 

information in support of the currently most accepted mechanism through beta keto acids 

formation. This exchange is completely missing in all of the recent reviews on the 

mechanism of the decarboxylative ketonization reaction. 

 

 

 

4.  CONCLUSIONS 
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In conclusion, carboxyl exchange between two acids, or a ketone and CO2, or a carboxylic 

acid and CO2 takes place during the catalytic conversion of carboxylic acids into ketones 

according to the most accepted mechanism of ketonic decarboxylation (Schemes 1-3). It is 

mediated by the condensation of CO2 as the electrophile with the enolized form of a ketone 

or a carboxylic acid as the nucleophile. The exchange process becomes possible when the 

condensation is followed by the retro-condensation. In the case of ketones, the exchange 

proceeds through the formation of a beta keto acid in reverse to its decarboxylation. 

Disproportionation of the unsymmetrical ketone leads to the formation of two symmetrical 

ketones. 

 

ACKNOWLEDGMENTS 

We are very grateful for the Summer 2016 Research support provided by St. John Fisher College. 

 

Appendix A. Supplementary Material: Catalyst preparation, experimental details, product analysis, 

calculation of equilibrium constants.  
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Fig. 1. Turnover frequencies for the 13C/12C exchange of CO2 with the labeled carbonyl group of 

ketones and carboxylic acids in comparison to the cross-ketonization of acetic and isobutyric acids 

catalyzed by untreated (ZR) and KOH treated (ZK) ZrO2 catalysts. 

 

SCHEME TITLES 

Scheme 1. Mechanism of 13C/12C exchange between ketones and CO2 resulting from reverse 

decarboxylative ketonization reaction.  

Scheme 2. Mechanism of 13C/12C exchange between carboxylic acids and CO2 as a result of the 

reversible condensation - decarboxylation reaction. 

Scheme 3. Mechanism of MIPK disproportionation to acetone and DIPK in the presence of CO2 and 

water. 

 

Table 1. 13C/12C exchange between carbonyl group of acids (ketones) and CO2 in the presence of 
water with zirconia catalysts in 22 ml pressurized autoclave. 
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1 Isobutyric-1-13C 40  1 :23 :23 ZK 167.7 15 280 78.3% 94.8% 0.141 0.250 
0.206 

2 Isobutyric-1-13C 42  1 :21 :21 ZK 167.7 16.5 270 52.6% 94.5% 0.091 0.161 

3 Isobutyric-1-13C 39  1 :23 :23 ZR 155.2 17.3 280 55.6% 94.8% 0.092 0.163 
0.142 

4 Isobutyric-1-13C 41  1 :22 :22 ZR 155.2 16.5 280 37.4% 94.6% 0.068 0.121 

5 Acetic-1-13C 39  1 :16 :15 ZK 144 6 270 59.6% 92.8% 0.449 0.798 
0.713 

6 Acetic-1-13C 42  1 :15 :15 ZK 144 5 270 36.4% 92.8% 0.354 0.629 

7 Acetic-1-13C 41  1 :15 :15 ZR 124.2 5 270 16.2% 92.8% 0.178 0.316 
0.334 

8 Acetic-1-13C 38  1 :17 :16 ZR 124.2 6 270 23.2% 93.1% 0.198 0.351 

9 (Acetone-2-13C) 50  1 :12 :12 ZR 123.7 24 270 17.2% 91.4% 0.050 0.089 0.095 

10 (Acetone-2-13C) 49  1 :13 :13 ZR 123.7 24 280 20.2% 91.9% 0.058 0.102 

11 MIPKa 430  1 :10:10 ZR 128 48 300 2.1%   -- 0.017 0.028 
0.027 

12 MIPKa 430  1 :10:10 ZR 128 168 300 6.9%   -- 0.016 0.027 

13 For Comparison: Acetic 
+ Isobutyric acid making 
MIPK  

600 
+ 
880 

  
1:2.5:2.5 

ZR 124.0 120 300 39.5%   -- 0.531 0.885  

a Measured as the rate of disproportionation to acetone and DIPK, mediated by condensation with CO2.   
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Fig. 1. Turnover frequencies for the 13C/12C exchange of CO2 with the labeled carbonyl group of 

ketones and carboxylic acids in comparison to the cross-ketonization of acetic and isobutyric acids 

catalyzed by untreated (ZR) and KOH treated (ZK) ZrO2 catalysts. 
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