The Isolation and Identification of a Causative Agent of the Feather Disorder Found in African Penguins (Spheniscus demersus)

Stephen Mele

Kristin F. Picardo
St. John Fisher University, kpicardo@sjf.edu

Gregory B. Cunningham
Saint John Fisher University, gcunningham@sjf.edu

Daryl D. Hurd
Saint John Fisher University, dhurd@sjfc.edu

Follow this and additional works at: https://fisherpub.sjf.edu/biology_facpub

Part of the Biology Commons

Publication Information
https://fisherpub.sjf.edu/biology_facpub/15

Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations.

This document is posted at https://fisherpub.sjf.edu/biology_facpub/15 and is brought to you for free and open access by Fisher Digital Publications at . For more information, please contact fisherpub@sjf.edu.
The Isolation and Identification of a Causative Agent of the Feather Disorder Found in African Penguins (Spheniscus demersus)

Abstract
Beginning in 2006, wild juvenile African Penguins (Spheniscus demersus) began to prematurely lose their juvenile feathers without immediate regrowth and were brought to the South African Foundation for the Conservation of Coastal Birds (SANCCOB) for rehabilitation. Without immediate regrowth of feathers, energy is shunted away from growth and used for thermoregulation and metabolism. It has previously been hypothesized that potential viral and bacterial infections may be causing this disorder. To test for this, Avian Polyomavirus (APV) nucleic acids, Budrigars Beak and Feather Disease Virus (BFDV) nucleic acids, and any bacterial nucleic acids were attempted to be isolated from the blood of affected penguins. Blood was drawn from affected and non-affected African Penguins at SANCCOB and stored in 70% ethanol. These samples were collected in 2008 and 2010. The samples were shipped to St. John Fisher College in Rochester, NY during the winter of 2011. Nucleic acids were then extracted from the blood using a QIAamp Blood DNA Mini. After confirmation of DNA via gel electrophoresis, PCR was performed using 2X OneTaq Megamix, water, and primers specific to the targeted viral and bacterial DNA. Gel electrophoresis was run on the PCR products. If DNA was observed at an expected range, then the PCR product was purified using a QIAquick PCR Purification Kit using the protocol included. The purified samples were sent to ATCG, Inc. for sequencing. The results were analyzed using NCBI BLAST. To date, six sequencing samples have shown the prevalence of APV, BFDV, and/or bacteria in the blood of affected penguins.

Disciplines
Biology

Comments

This poster presentation is available at Fisher Digital Publications: https://fisherpub.sjf.edu/biology_facpub/15
The Isolation and Identification of a Causative Agent of the Feather Disorder Found in African Penguins (Spheniscus demersus)

Stephen Mele, Dr. Kristin Picardo, Dr. Gregory Cunningham, Dr. Daryl Hurd
St. John Fisher College, Rochester, NY 14618

ABSTRACT

Beginning in 2006, wild juvenile African Penguins (Spheniscus demersus) began to prematurely lose their juvenile feathers without immediate regrowth and were brought to the South African Foundation for the Conservation of Coastal Birds (SANCCOB) for rehabilitation. Without immediate regrowth of feathers, enumerating feather loss and managing the condition for thermoregulation became a problem. It has previously been hypothesized that potential viral and bacterial infections may be causing this disorder. To test for this, Avian Polyomavirus (APV) nucleic acids, Budigars Beak and Feather Disease Virus (BFDV) nucleic acids, and any bacterial nucleic acids were attempted to be isolated from the blood of affected penguins. Blood was drawn from affected and non-affected African Penguins at SANCCOB and stored in 70% ethanol. These samples were collected in 2008 and 2010. The samples were shipped to St. John Fisher College in Rochester, NY during the winter of 2011. Nucleic acids were then extracted from the blood using a QIAamp Blood DNA Mini. After confirmation of DNA via gel electrophoresis, PCR was performed using 2X OneTaq Megahex, water, and primers specific to the targeted viral and bacterial DNA. Gel electrophoresis was run on the PCR products. If DNA was observed at an expected range, then the PCR product was purified using a QIAquick PCR Purification Kit using the protocol included. The purified samples were sent to ATGC, Inc. for sequencing. The results were analyzed using NCBI BLAST. To date, six sequencing samples have shown the presence of APV, BFDV, and/or bacteria in the blood of affected penguins.

HYPOTHESES

The observed feather disorder is being caused by:
1. A bacterial pathogen
2. The Avian Polyomavirus
3. The Beak and Feather Disease Virus

METHODS

Blood samples collected in 2008 and 2010 were stored in 70% ethanol sent to St. John Fisher College. DNA was extracted from blood samples using QIAGEN’s DNA Blood Mini Prep and confirmed by gel electrophoresis. Primers that were developed to the genomes of APV and BFDV were used for PCR. Universal bacterial primers were used to amplify bacterial DNA. Please see below for the specific primers used. PCR products were purified and sent to ATGC, Inc. for sequencing.

RESULTS

Top Left: Blood from healthy Spheniscus demersus penguins were spiked with diluted APV rinses (1:50 in a C2H5OH solution). Lane 1 was stored in 70% ethanol while Lane 2 was stored at +4°C. Top Right: Blood from healthy Spheniscus demersus penguins were spiked with Shigella sonnei epidermopterum. Lane 1 was stored in 70% ethanol while Lane 2 was stored at +4°C. Bottom Left: PCR amplification of the APV spiked blood using primer combinations 4 (Lane 2), 7 (Lane 3), 9 (Lane 5), 10 (Lane 6), and 11 (Lane 7). Bottom Right: PCR amplification of the APV spiked blood using primer combination 1 (Lanes 2, 3, 4, and 6).

DISCUSSION AND FUTURE DIRECTION

The control experiments produced a PCR product that, when sequenced and entered into NCBI BLAST, were 99% similar to their parent NDA (bacteria to S. epidemico and viral to APV). Two affected penguins out of 10 were able to be PCR amplified and sequenced. Sample 579 that tested for bacteria (Figure 2, Lane 3) amplified a region of DNA that was 95% similar to various Shigellaceae species. Samples 579 and 757 testing for APV and BFDV (Figure 2, Lanes 4 and 6) amplified a DNA region which all were sequenced to be Budigearis Fledgling Disease Polyomavirus around the similarity of 98%.

The data does not fully support a definitive cause of the fledgling disease. However, the fact that only affected South African penguins were able to have certain regions of DNA PCR amplified using very specific viral primers and universal bacterial primers has something to be said. The control experiments provided a basis that APV primers could only amplify regions of DNA on APV. Likewise, BFDV primers were not able to amplify any region of APV DNA. Therefore, there is very little possibility of primers targeting non-specific regions of DNA.

The samples sent were extracted in 2008 and 2010 and stored in 70% ethanol to inactivate any live viruses and bacteria. This was required by the United States in order to have the samples shipped in. Ethanol can deteriorate membranous cells. Once DNA is exposed to ethanol, it can deteriorate which may lead to a false negative result for APV, BFDV, or bacterial screens.

Future experimentation may entitle a student to travel South Africa in order to be able to work on fresh samples. Also, future research can utilize products from QIAGEN that are meant to effectively preserve DNA in order to have unaffected samples to research with.

REFERENCES

**Primer: F; R: reverse primer

Table 1

<table>
<thead>
<tr>
<th>Primer Combination</th>
<th>Primer Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane 1</td>
<td>Lane 2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>APV F</td>
<td>APV R</td>
</tr>
<tr>
<td>APV R</td>
<td>APV F</td>
</tr>
<tr>
<td>APV F</td>
<td>APV R</td>
</tr>
<tr>
<td>APV R</td>
<td>APV F</td>
</tr>
<tr>
<td>APV F</td>
<td>APV R</td>
</tr>
<tr>
<td>APV R</td>
<td>APV F</td>
</tr>
</tbody>
</table>

*F = forward primer, R = reverse primer

Figure 1

Figure 2